Non-newtonian fluid flow through three-dimensional disordered porous media.

نویسندگان

  • Apiano F Morais
  • Hansjoerg Seybold
  • Hans J Herrmann
  • José S Andrade
چکیده

We investigate the flow of various non-newtonian fluids through three-dimensional disordered porous media by direct numerical simulation of momentum transport and continuity equations. Remarkably, our results for power-law (PL) fluids indicate that the flow, when quantified in terms of a properly modified permeability-like index and Reynolds number, can be successfully described by a single (universal) curve over a broad range of Reynolds conditions and power-law exponents. We also study the flow behavior of Bingham fluids described in terms of the Herschel-Bulkley model. In this case, our simulations reveal that the interplay of (i) the disordered geometry of the pore space, (ii) the fluid rheological properties, and (iii) the inertial effects on the flow is responsible for a substantial enhancement of the macroscopic hydraulic conductance of the system at intermediate Reynolds conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanoparticle dispersion in disordered porous media with and without polymer additives.

In purely viscous Newtonian fluids, mechanical mixing of the fluid stream as it moves through an unstructured porous medium controls the long-time dispersion of molecular tracers. In applications ranging from environmental remediation to materials processing, however, particles are transported through porous media in polymer solutions and melts, for which the fluid properties depend on the shea...

متن کامل

Traveling Wave Solutions of 3D Fractionalized MHD Newtonian Fluid in Porous Medium with Heat Transfer

In the present paper, we get exact solutions of Magnetohydrodynamic (MHD) of the fractionalized three-dimensional flow of Newtonian fluid with porous and heat transfer through the traveling wave parameter. The governing equations are produced dependent on established Navier-stokes equations which can be diminished to ordinary differential equation by wave parameter ξ=ax+by+nz+Utα/Γ(α...

متن کامل

A Porous Media Model for Blood Flow within Reticulated Foam.

A porous media model is developed for non-Newtonian blood flow through reticulated foam at Reynolds numbers ranging from 10-8 to 10. This empirical model effectively divides the pressure gradient versus flow speed curve into three regimes, in which either the non-Newtonian viscous forces, the Newtonian viscous forces, or the inertial fluid forces are most prevalent. When compared to simulation ...

متن کامل

Effective Rheology of Two-Phase Flow in Three-Dimensional Porous Media: Experiment and Simulation

We present an experimental and numerical study of immiscible two-phase flow of Newtonian fluids in three-dimensional (3D) porous media to find the relationship between the volumetric flow rate (Q) and the total pressure difference ([Formula: see text]) in the steady state. We show that in the regime where capillary forces compete with the viscous forces, the distribution of capillary barriers a...

متن کامل

Investigation of blood flow as third order non-Newtonian fluid inside a porous artery in the presence of a magnetic field by an analytical method

In this research various nonlinear fluid models have been introduced and the balloon movement in the porous arteries, including third-order non-Newtonian fluid, is described under the influence of the magnetic field. In order to solve the nonlinear equations governing the desired artery, an analytical method of approximation collocation and least squares are proposed. The effect of various para...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 103 19  شماره 

صفحات  -

تاریخ انتشار 2009